Finite Element Approximation of Maxwell's Equations with Debye Memory

نویسنده

  • Simon Shaw
چکیده

Maxwell’s equations in a bounded Debye medium are formulated in terms of the standard partial differential equations of electromagnetism with a Volterra-type history dependence of the polarization on the electric field intensity. This leads to Maxwell’s equations with memory. We make a correspondence between this type of constitutive law and the hereditary integral constitutive laws from linear viscoelasticity, and we are then able to apply known results from viscoelasticity theory to this Maxwell system. In particular, we can show long-time stability by shunning Gronwall’s lemma and estimating the history kernels more carefully by appeal to the underlying physical fading memory. We also give a fully discrete scheme for the electric field wave equation and derive stability bounds which are exactly analogous to those for the continuous problem, thus providing a foundation for long-time numerical integration. We finish by also providing error bounds for which the constant grows, at worst, linearly in time excluding the time dependence in the norms of the exact solution . Although the first mixed finite element error analysis for the Debye problem was given by Li 2007 , this seems to be the first time sharp constants have been given for this problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations

We propose a new numerical approach for two-dimensional Maxwell's equations that is based on the Hodge decomposition for divergence-free vector fields. In this approach an approximate solution for Maxwell's equations can be obtained by solving standard second order scalar elliptic boundary value problems. This new approach is illustrated by a P 1 finite element method.

متن کامل

Superconvergence analysis for Maxwell's equations in dispersive media

In this paper, we consider the time dependent Maxwell’s equations in dispersive media on a bounded three-dimensional domain. Global superconvergence is obtained for semi-discrete mixed finite element methods for three most popular dispersive media models: the isotropic cold plasma, the one-pole Debye medium, and the two-pole Lorentz medium. Global superconvergence for a standard finite element ...

متن کامل

Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations

In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...

متن کامل

High-Order Numerical Methods for Maxwell's Equations on Unstructured Meshes

For more than fifteen years, spectral finite elements (i.e. finite element methods on hexahedral meshes with mass-lumping) showed their efficiency to model the propagation of acoustic and elastic waves in the time domain, in particular in terms of accuracy. Moreover, their mixed formulation [1] dramatically increases their efficiency in terms of storage and computational time. This approach, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Numerical Analysis

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010